
 

  



1. The first part is simply 6! as there are no repeated element amongst the digits 1 to 6, the second part is answered 

by blocking 1, 2 and 3 as a single element and the third part is simply half of the arrangements.  

The last part is more difficult and care is needed to ensure certain arrangements are not counted twice.  

The sixth digit can be any of 0 to 9 but the cases where the extra digit is 0-5 must be considered carefully.  

 

2. The size of the power set is simply a power of two (the power being the number of elements) as each element is 

either included or excluded within each subset. The number of subsets containing a given element is the previous 

power of two as we can imagine forming every possible subset without the given element and then include it in 

each (alternatively you could sum the binomial coefficients as you are choosing 0, 1, 2, ..., n-1 other elements to 

form a subset with the given element). 

 

3. Care is needed when n is even and k is half of n because in this case there is only one seat that B can take which 

satisfies the condition giving a probability of 
1

𝑛−1
 . In all other cases there are two seats B can take hence the 

probability is 
2

𝑛−1
. 

 

4. Clearly the maximum will be achieved when no three lines intersect at a single point and no two lines are parallel. 

The nth line drawn adds n regions and we start with one region so the maximum is 1 +
1

2
𝑛(𝑛 + 1). If we consider 

circles instead it seems that the number of regions is a power of two but this eventually breaks down with four 

circles meaning that in order to construct a Venn diagram consisting of four of more sets then circles are not up 

to the task. With one circle we have two regions and at best each new circle drawn intersects each previously 

drawn circle twice. This means each new circle adds 2, 4, 6, ... regions and hence the total number of regions is 

given by the quadratic formula n2-n+2.  

 

5. You can imagine forming a square by lifting a line segment up in to the air, you can imagine creating a cube by 

lifting a square in to the air and thus you try to imagine lifting a cube in to the fourth dimension to form a 

tesseract. It should be clear the number of vertices of an n dimensional hypercube will be 2n as we double each 

time a new dimension is added. The number of edges will be n2n-1 and this result is easily obtained if you consider 

the number of edges which coincide at a given vertex (it is just the number of dimensions and each edge has two 

end points). The coordinates of the vertices of the tesseract will be all coordinates consisting of zeroes and ones 

e.g. (0,0,0,0), (0,0,0,1), through to (1,1,1,1) and the longest diagonal will have length 2 because it would go between 

the origin and (1,1,1,1). 

 

6. There must be n-1 matches played as at the end of every match one team is sent out of the competition and of 

course there is only one winner at the end.  

 

7. For the tennis pairings consider player 1, they can be paired with 2n-1 other people. Next relabel the remaining 

players and consider player 1 again, this new player 1 can be paired with 2n-3 other people. Continue this line of 

thought and it is clear the number of pairings is the product all odd numbers from 1 to 2n-1. This is not 

something that can be evaluated quickly and some messing around with factorials and powers of two will lead to 

the more succinct expression 
(2𝑛)!

2𝑛𝑛!
. 

 

8. A tessellation of the plane using only a regular polygon can only occur if the interior angle of the regular polygon 

used is a factor of 360 (consider a single vertex where multiple polygons meet, the total interior angles around the 

point must equal 360) thus the only possibilities are triangles, squares and hexagons. There are only five platonic 

solids: consider a single vertex of our platonic solid, at least 3 faces meet at this point and the sum of interior 

angles present must be less than 360 otherwise the shape would flatten out and cease to be a solid. Thus the only 

platonic solids that can exist are made up of 3, 4 or 5 triangles, 3 squares or 3 pentagons meeting at each vertex. 

Consider the platonic solids made up of triangles, each face will have three vertices and as already stated 3, 4 or 5 

faces will meet at each vertex. We can double count the edges (actually twice the edges) of our platonic solid as 

follows: 2E=3F=pV where p takes the values 3, 4 or 5. Substituting this in to Euler’s formula will yield the desired 

result. 

 



9. Consider the total of all remaining numbers of the blackboard, it can be shown that the parity (odd or evenness) 

of this total is invariant under the proposed operation and as it begins as an even quantity then it is impossible to 

achieve the desired scenario. 

 

10. There are only 2 possible configurations, three blue faces meeting at a point and three blue faces wrapping around 

the cube joined edge to edge. 

 

11. The first term counts the number of subsets of size r that contain the element 1 and the second counts the 

number not containing 1, together they must count the total number of subsets of size r. For the second part the 

first term counts the number of subsets of size r that contain 1 and 2, the second term counts the number of 

subsets of size r that contain either 1 or 2 but not both and the final term counts the number of subsets of size r 

that contain neither 1 or 2. In total these must count the number of subsets of size r. 

 

12. Divide the square in to nine smaller squares and apply the pigeon hole principle. 

 

13. Consider the smallest (or equal smallest) integer on the board and call it z, it is surrounded by four other positive 

integers a, b, c, d and it is their mean. By our choice of z none of a, b, c, d can be smaller than it and thus none 

can be larger due to the mean condition hence they must all be equal to z. 

 

14. It is easiest to think about the second pack as fixed with a particular order then to look at how many different 

arrangements (shufflings) of the first pack lead to a success in each part. Of course to have all 52 pairs matching 

we can only have one arrangement for the first pack (the identical arrangement to pack two) so the probability of 

this occurring is 
1

52!
. 51 matching pairs is impossible because as soon as one pair fails to match so must another. 50 

matching pairs is possible and this would result from the two packs initially matching but then two cards being 

switched around in the first pack. There are 52 choose 2 pairs that can be switched hence the probability of 50 

pairs matching is 
1326

52!
. For the last two parts it makes things easier to consider the term derangement, this is a 

permutation of {1, 2, 3, ..., n} in which no element is in its usual place. An example would be {3, 1, 2} whereas {3, 

2, 1} would not be as 2 is in its usual place. To have k pairs matching we must have both packs initially matching 

and then in pack one we must ‘derange’ k cards. In order to find the relevant probability we need to count 

derangements which is not an easy task in itself. Let us denote the number of derangements of {1, 2, …, n} as dn. 

The probability of k pairs matching is then 
𝑑𝑛−𝑘(52

𝑘 )

52!
. 

 

15. Initially it seems the number of regions follows the powers of 2 but the persistent among us will realise the 

sequence goes 2, 4, 8, 16, 31. With no points we have one region and it is easily seen as points are added each 

chord drawn between them creates a new region. There are also regions created when chords intersect within the 

circle. Counting these events is fairly straightforward: there are n choose 2 chords (as each chord has two points 

on the circumference as its endpoints) and there are n choose 4 internal intersections (as each intersection can be 

viewed as the intersection of the diagonals of a quadrilateral with its vertices being points on the circumference). 

Hence there are 1 + (𝑛
2
) + (𝑛

4
) regions created by n points on the circumference. 

 

16. Consider a given configuration of n straight lines drawn between the red and blue points, if there is no 

intersection between the lines we are done and if there is then we must have a quadrilateral with vertices red, blue, 

blue, red (taken in a clockwise/anticlockwise sense) and the intersection is the intersection of its diagonals. We 

then switch the lines to go from being the diagonals of the quadrilateral to two of its sides (note that the total 

length of these new lines is less than the previous by the triangle inequality). Each time we perform one of these 

swaps, the sum of the lengths of the segments decreases. This means that we will never arrive back at the same set 

of lines we had. There are n! different ways we could have drawn the segments to join the points together, so we 

will eventually be unable to perform any more swaps, and will be left at a configuration with no crossings. 

 

 

 



17. Consider the cells labelled 1 and n2, there must exist a path between them made up of no more than n adjacent 

squares (inclusive of 1 and n2). If each pair of adjacent squares had values that differed by at most n then the 

difference between the first and last would be, at most, n(n-1) however the actual difference is n2-1 which is 

greater for all n>1. Thus some pair of adjacent squares along this chain has difference at least n+1.  

 

18. If the points were not a single straight line, you could draw different triangles with the points as vertices. Consider 

the smallest such triangle, that is the triangle with the least area. At least two of the vertices of this triangle have 

the same colour, this means between them is a point of the different colour. Join this point with the third vertex 

and you end up with two triangles, each having less area than the previously chosen 'triangle with the least area', 

hence we reach a contradiction. Thus such a triangle could not have existed in the first place and the points must 

all lie on a single straight line. 

 

19. Consider the smallest distance between any pair of students. Since this is the smallest distance, the closest student 

to each of these is the other, so these students throw their ball to each other. 

 

20. Every multiple of nine has a digit sum which is divisible by nine hence the longest chain possible is eight (as any 

list containing nine consecutive integers must contain a multiple of nine). 

 

21. It is easily seen that the T-tetrominoes can tile a 4x4 grid and if a and b are even then copies of the 4x4 grid can 

tile the larger 4cx4d grid (where 2c=a and 2d=b). In the case where a and b are odd it is impossible to tile such a 

grid with T-tetrominoes. This is because an odd number of tiles would be needed and if we imagine colouring the 

grid like a chessboard we can see each T-tetromino would cover an odd number of white squares 

(1 or 3 depending on orientation) but there are 2ab white squares in total so such a tiling is not possible. 

 

22. It is possible to answer this question rather elegantly using base three arithmetic but here we will follow a solution 

relying on the binomial expansion. If we count the number of arrangements with k red counters we would have 

(64
𝑘
)264−𝑘 and if we evaluate the difference between those where k is even and those where k is odd we should 

notice that we have the binomial expansion of (2-1)64=1. Thus there is one more arrangement containing an even 

number of red counters. 

 

23. We can quickly check that a cube cannot satisfy the conditions set, for surface area and perimeter to be equal the 

dimensions of the cube must be 2 and this does not give the correct result for volume. If we equate surface area 

and perimeter and rearrange we can show that at least one of the dimensions must be larger than two and less 

than 2. If we equate volume and surface area and rearrange we can show that each dimension must be larger than 

2 which yields a contradiction. Hence the volume, surface area and perimeter of a cuboid cannot all be equal. 

 

24. The best approach here is start at the finish and label each square L or W depending on whether it leaves the 

opponent with a winning or losing move. Quickly a pattern will emerge and the extension questions relies on 

working modulo 2 and modulo 3 when changing the size of the grid to mxn. 

 

25. Player one has a winning strategy unless there are n=2m-1 sweets in the pile to start. The winning strategy is to try 

to leave 2k-1 sweets at the end of your go and this is only possible for one player. 

 

26. Assume that two distinct lattice points lie on a particular circle in the family and by considering arguments of 

irrationality show they must in fact be the same point. As the circle becomes (continuously) larger it meets one 

lattice point at a time on its boundary and each lattice point is a fixed distance away from the centre hence all 

points must be contained in the family of circles given. 

  



27. Let en denote the expected value of the number of loops from this process starting with n ropes. We have the 

following recurrence relation 𝑒𝑛 = 𝑒𝑛−1 +
1

2𝑛−1
. This can be derived as follows: if the process starts with n ropes, 

after one loose end is selected there are 2n-1 loose ends remaining, giving a probability of 
1

2𝑛−1
 that the other end 

of the same rope will be selected as the second choice. If this occurs, there is one loop already formed and n-1 

loose ropes left, so the expected value for the number of loops formed in this case is 1+en-1. There is a probability 

of 
2𝑛−2

2𝑛−1
 that an end of a different rope will be chosen, leaving n-1 ropes (1 longer one and n-2 short ones). In this 

second case the expected value of the number of loops is en-1. Combining the two cases gives the above result. 

The recurrence relation can be used to find the required expectation of 
6508

3465
. 

 

28. After several trials with small n it is clear the result to be conjectured is that the sum equals n. In fact it does and 

an induction is easily performed to confirm the initial guess. For the inductive step we realise all subsets in the 

case where n=k appear when n=k+1 but additional subsets also occur, these consist of the former with the added 

element k+1 and the set containing just the element k+1. The result follows easily from these observations.  

 

29. Assume the rod has length one and that the pieces have length x, y and 1-x-y. Consider the possible values x and y 

can take: x, y>0 and x+y<1. If we plot this region in the xy plane we have a triangle of area 0.5. If the rod is 

broken arbitrarily in to three pieces then all points within the triangle are equally likely. For a triangle to be formed 

from the three pieces then their lengths must obey the triangle inequality thus each of the three lengths must be 

less than 0.5. If we plot the three inequalities x<0.5, y<0.5 and 1-x-y<0.5 we get another triangle of area 0.125. 

Thus the probability a triangle can be formed is 
0.125

0.5
= 0.25. 

 

30. The simplest way to justify this claim is to consider the quantity (𝑚+𝑛−1
𝑛

) which we know takes on an integer value 

for all m, n>0. If we consider using the formula for the binomial coefficient it becomes clear that this quantity is 

precisely the quotient of n consecutive integers and n! which proves the result.  

 

31. The three lengths a, ar, ar2 must obey the triangle inequality and as such three inequalities can be formed, two of 

which yield the required result (the other happens to always be true). 

 

32. Begin by sketching |x|+|y|=100, this is a diamond with vertices at (-100,0), (0,100), (100,0) and (0,-100). We 

want to count all lattice points on and within this graph as each corresponds to an integer solution to the original 

equation. If we start at the top vertex (0,100) then there is one lattice point, moving downwards the next line of 

lattice points has 3 on or within the graph, the next line has 5, ..., and the x-axis has 201 lattice points on or within 

the graph. Each line above the x-axis is repeated below and so we have 2(1+3+5+...+199)+201=20201 integer 

solutions to the original equation. 

 

33. Consider the square of an integer mod 3 (that is its remainder when divided by 3) the only possibilities are 0 or 1 

but in mod 3 our equation reads x2+y2=0 which is only possible if x2 and y2 are both multiples of three (and hence 

so are x and y as three is prime). This means there are no solutions to the equation in which x, y and z are 

coprime. Next assume x and y are both multiples of three, quickly we can see z must also be a multiple of three. 

Now if all three variables are a multiple of three we can see another solution will be given by (
𝑥

3
,
𝑦

3
,
𝑧

3
) but we can 

repeat this procedure over and over to yield more solutions which are decreasing in magnitude, of course this 

cannot happen indefinitely as there is a smallest natural number hence there must not have been any solutions to 

begin with (this method of proof is known as infinite descent). Thus there are no integer solutions. 

 

34. If we rearrange the given equation it is clear the graph will be two lines which intersect at the origin and have 

gradients ±
1

√𝑛
. In the case n=9 we have infinitely many pairs of natural number solutions, namely any pair with 

𝑥 = ±3𝑦. In the case n=10 we have no natural number solutions for if we did it would imply √10 were rational.  

 

 

 



35. Quickly we can see that the smallest variable a must be less than 3 and as it cannot be 1 it must take the value 2. 

Then we reduce the problem to finding natural solutions for the equation 
1

𝑏
+

1

𝑐
=

1

2
 where b<c. It can be deduced 

the next smallest variable b must be less than 4 and greater than 2 hence must take the value 3.  

This leads immediately to the value of 6 for c and hence there is only one natural number solution which satisfies 

the conditions, (2, 3, 6).  

 

36. Consider the first equation mod 4, remembering that squares mod 4 take on the values 0 or 1 only, it becomes 

x2+y2=3 which clearly has no solutions. Exactly the same technique can be applied to the second equation, it must 

be noticed that 33 is 1 mod 4 and then the equation reduces to x2+y2=3 also. 

 

37. It should be clear as n, x, y, z are all positive integers that z>x, y and from here it is a good idea to divide by nz. 

This leaves two unit fractions which sum to one and thus each must be equal to 
1

2
. From here all solutions can be 

obtained, there are infinitely many but they all take the form (n=2, x, y=x, z=x+1) as an example note 29+29=210. 

 

38. The equation can be written as x4+x3+x2+x3+x2+x+x2+x+1=0 and from this it can be factored as (x2+x+1)2=0 

and thus has no real solutions. 

 

39. The key thought needed for all three parts is that solutions can only be obtained if each modulus is simultaneously 

zero. For the first part there are no solutions, for the second we have only one solution 𝑥 =
4

3
 and finally for the 

third part we have solutions at every odd multiple of π. 

 

40. Notice that the second set of equations can be written as 𝑎 + 𝑏 + 𝑐 = 3 =
𝑎𝑏+𝑏𝑐+𝑐𝑎

𝑎𝑏𝑐
 and as 𝑎𝑏𝑐 = 1 this implies a 

third set of equations: 𝑎 + 𝑏 + 𝑐 = 3 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. Next consider the polynomial f(x)=(x-a)(x-b)(x-c) which can 

be expanded and simplified to f(x)=x3-3x2+3x-1 (by using the equations involving a, b, c given already) which can 

be further factored as f(x)=(x-1)3. This polynomial has the single repeated root 1. Obviously the roots of the 

polynomial are a, b, c by virtue of its construction hence the only real solution to the original equations is (1, 1, 1).  

 

41. The stated solution is obvious but let us focus on another non trivial solution. Let this solution be denoted (x, y, z) 

and consider the highest power of two which divides x, y and z, call it 2k where k≥0. Let us rewrite our solution as 

(a2k, b2k, c2k) and upon substitution and division by 2k our equation becomes a2+b2+c2=2k+1abc. By construction 

of a, b and c they cannot all be even and in fact it must be that only one of them is (as the RHS of the last 

equation is even). If we consider the last equation mod 4 it becomes clear no such solution can exist. Thus the 

only integer solution to the original equation is (0, 0, 0). 

 

42. It is first worth noting that none of a, b or c can be zero otherwise their reciprocals would not be defined. The 

second equation implies a third equation, namely ab+bc+ca=0. If we consider (a+b+c)2=a2+b2+c2+2(ab+bc+ca) 

which in combination with the given equations implies a2+b2+c2=0. From this we deduce there are no real 

number solutions to the original equations as (0,0,0) is not admissible. 

 

43. If we rearrange the given equation to make y the subject and then perform polynomial long division we deduce 

that 2x-5 must equal an odd divisor of 6.  

This leads to only two positive integer solutions (𝑥, 𝑦) ∈ {(3,11), (4,9)}. 

 

44. Let the two perpendicular sides have length a and b,  

the area then becomes 
𝑎𝑏

2
 and the perimeter is given by 𝑎 + 𝑏 + √𝑎2 + 𝑏2. The stated condition leads to, upon 

squaring and simplifying, ab-4a-4b+8 which can be partially factored as (a-4)(b-4)=8. As we only want positive 

integer solutions this leads to the two triangles with side lengths (5,12,13) and (6,8,10). 

 

  



45. First note 360=1x2x3x4x5x3 and that the given expression can be factored as (n-2)(n-1)(n)(n+1)(n+2)(n). The 

expression is clearly the product of 5 consecutive integers (and an additional n) which will certainly be divisible by 

1x2x3x4x5 and the extra factor of 3 is accounted for in one of two ways; either n=1 or 2 mod 3 in which case 

there will be two multiples of 3 among the 5 consecutive factors or n=0 mod 3 and the two factors of 3 are 

accounted for within the n2 term. 

 

46. By using the binomial theorem we see that 99n=(100-1)n=(-1)n+100k where k is an integer. From this we deduce 

that for even n the last two digits required will be 01 and for odd n the last two digits required will be 99. 

 

47. It should be intuitively clear that the first expression will eventually grow much larger than the second. To 

formalise our intuition we could utilise logarithms or simply replace 100 with the slightly larger value of 27=128 

and compare exponents. 

 

48. Hopefully most will spot x=2 as a trivial solution and in fact that is the only solution. Consider dividing the given 

equation by 5x, this yields the new equation 1 = (
4

5
)𝑥 + (

3

5
)𝑥. If x>2 then each term on the right will decrease and 

hence cannot sum to 1 and if x<2 each term will increase and thus can no longer sum to 1 also. Thus we deduce 

the only real solution to the given equation is when x=2. 

 

49. For the first part we factor the expression as (n-1)(n+1) and note if n is odd then one of these factors is divisible 

by 4 and the other 2 hence the expression is divisible by 8. For the next two parts we factor the given expression 

as (n-1)(n)(n+1)(n2+1) and note that 30=1x2x3x5. The expression contains the product of 3 consecutive integers 

so is certainly divisible by 1x2x3 and the factor of 5 is accounted for in one of two ways; if n=0, 1 or 4 mod 5 then 

on of n-1, n or n+1 is divisible by 5 otherwise n= 2 or 3 mod 5 and in this case n2+1 is divisible by 5. 

 

50. The terms can be taken in pairs and factored using the difference of two squares which yields the rather simpler 

sum S(n)=-3+-7+-11+...+-(4n-1)=-n(2n+1). The second part is can be written as S(20)-S(10)=-610.  

 

51. Of course infinitely many counter examples exist but as a specific example consider x=10n-1 where n is a positive 

integer. We find that x2=102n-2(10n)+1=999...9998000...0001 where there are n digit 9’s, of course if n is greater 

than 1001 we have a counter example to the initial statement. 

 

52. The given expression can be factored as (2n-1)(2n+1) and as these factors are either side of a power of two then 

one of them must be a multiple of 3 as required. 

 

53. Let n be a natural number and write it as n=100q+r where q and r are integers and r<100. From the binomial 

expansion we can see that the last two digits of n3 will come from the last two digits of r3. The only way for the 

last digit of r3 to be 1 is if the last digit of r is also 1. Now we just need to check the cubes of {11, 21, 31, 41, 51, 

51, 61, 71, 81, 91} to see how many end in 11. It turns out only 713=357911 ends with 11 and as 1 in every 100 

numbers from 1 to 1000000 end in 71 the probability we are looking for is 0.01. 

 

54. Using the change of base formula for logarithms we can write the first expression as log𝜋 2 + log𝜋 5.  

This can be further simplified to log𝜋 10 which is greater than two by the given inequality. The second expression 

can be rewritten as log𝜋 2 + log2 𝜋 and as π<4 and π2>8 we deduce the second expression is also greater than 2. 

 

55. There must be infinitely many prime numbers for if there was not we could devise a finite list of all known prime 

numbers and this process will yield a contradiction. Construct the integer k which is one more than the product of 

all primes on our list, now we must have that no prime on our list divides k. We must now  

be in one of two cases; k may be prime in which case we have constructed a prime not on our initial list or 

alternatively k is composite but has a prime factor that is not on our list. Either way it is impossible to construct a 

finite list containing every prime hence there must be infinitely many primes.  

 

 



56. This question is similar to the last but is slightly trickier and here we will construct the integer k which is one less 

than 4 times the product of our finite list of primes of the form 4n+3. Of course it is worth noting k is of the 

form 4n+3 also and clearly, as before, none of our primes on our finite list divide k. Again we have two cases; k 

may itself be prime in which case we have missed a prime of the form 4n+3 from our finite list of all such primes 

or k is composite but has prime factors that are not on our list. The second case is not quite as straight forward as 

before as perhaps k has prime factors of the form 4n+1 instead, this would not violate our claim that there are 

finitely many primes of the form 4n+3. If k has only prime factors of the form 4n+1 then it must itself be of the 

form 4n+1 which is a contradiction and hence it must have at least one prime factor, not on our list and of the 

form 4n+3. Again we deduce there must be infinitely many primes of the form 4n+3. 

 

57. It must be that log2 3 is irrational for otherwise assuming it to be rational we reach a contradiction: if log2 3 =
𝑝

𝑞
 

where p and q are integers then this implies 2𝑝 = 3𝑞 which is of course impossible as the LHS is even and the 

RHS is odd. 

 

58. For n odd the given expression will always be a multiple of 5 and for n even it will always be a multiple of 3, to 

justify this claim rewrite the expression as (15-1)n+11 and upon expanding with the binomial theorem it should 

become clear. 

 

59. The given expression can be factored as (a-1)(an-1+an-2+...+a+1) but as it must be prime that implies a-1=1 and 

hence a must be 2. Now if n was composite we could write 2n-1 as 2pq-1≡(2p)q-1 but this would imply 2p-1 was a 

factor and due to the primality of the initial expression p could only be 1 and hence n is prime. The second part 

involves noting that xn+1≡(x+1)(xn-1-xn-2-...-x+1) for n odd. This means for 2n+1 to be prime we must have that n 

has no odd factors, in other words n must be a power of two. Be cautious, what we have not said is that 2n+1 is 

always prime when n is a power of 2. 

 

60. An obvious solution is p=3 and if other values of p are trialled it seems one of 2p-1 and 2p+1 are always multiples 

of three. Now no other value of p, except p=3, can be a multiple of three as p must be prime and from this we 

deduce 2p is also not a multiple of three. If we consider the three consecutive integers 2p-1, 2p and 2p+1 we have 

that 2p is not a multiple of three so clearly one of 2p-1 and 2p+1 must be. Thus we have found the only solution 

and that is p=3.  

 

61. Begin by considering a circle of unit radius. To achieve the lower bound we consider the area of the inscribed 12 

sided regular polygon and to achieve the upped bound we consider the area of the circumscribed square.  

 

62. The Fibonacci sequence is defined by the recurrence relation 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 and this will allow us to find the 

limit of the quotient of consecutive terms in the sequence. We are looking for 𝐿 = lim
𝑛→∞

𝑓𝑛+2

𝑓𝑛+1
 which can be 

simplified (after using the recurrence relation) to 𝐿 = 1 +
1

𝐿
. The positive solution to this equation is in fact the 

golden ratio. 

 

63. A nice trick will simply this problem immediately, notice that cos(90-x)=sin(x) which means cos(89) can be 

replaced with sin(1) and then we can further simplify cos2(1)+sin2(1) to 1. Continuing this process we will end up 

with a final answer of 44+cos2(45)=44.5. 

 

64. If n has N digits then 10N-1<n<10N which implies 102N-2<n2<102N and thus n2 may have 2N-1 or 2N digits. To 

find the number of digits of any given n we can take its logarithm base 10 and round down to the nearest integer. 

 

65. Consider the discriminant b2-4ac mod 8, as b is odd then b2≡1 mod 8 and as a and c are both odd also this means 

4ac≡4 mod 8. This give the discriminant the value 5 mod 8 but all square numbers are 0, 1 or 4 mod 8 so we have 

that the discriminant cannot be a perfect square. If a quadratic is to have rational roots its discriminant must be a 

perfect square (think about it for a moment) thus the result is proven, if a, b and c are all odd then the given 

quadratic equation has no rational roots. 

 



66. The quantity tan(1) is not rational and this can be shown by repeated application of addition formulae tan(A+B). 

If we first assume tan(1) is rational then tan(2)≡tan(1+1) must also be rational and we keep going until we reach 

the conclusion tan(30) must also be rational. Of course it is well known that tan(30) is irrational hence we have 

arrived at a contradiction and we must have that tan(1) was irrational in the first place. A similar argument can be 

followed to deduce that cos(1) is irrational also but in this case the following formula proves useful; 

cos(n+1)+cos(n-1)=2cosncos(1), remembering that cos(0)=1. 

 

67. The key to finding the desired sum is utilising the following identity ∑  
1

𝑟2 =∞
1 ∑  

1

(2𝑟−1)2
+ ∑  

1

(2𝑟)2
∞
1

∞
1  from which it 

soon becomes clear the second term on the RHS of the above summation is simply 0.25 of the LHS so the 

desired sum is 
3

4
(
𝜋2

6
) =

𝜋2

8
. 

 

68. If we write the expression within the limit as one fraction we see we have the sum of the squares of the integers 1 

to n over n3 which can be rewritten as 
1

6
(1)(2 +

1

𝑛
)(1 +

1

𝑛
). It is clear as n grows large that the expression will tend 

to 
1

3
 which is the limit we desire.  

 

69. If we write the expression inside the product as a single fraction it becomes 
𝑛2−1

𝑛2 ≡
(𝑛−1)(𝑛+1)

𝑛2  and as we evaluate 

the product we see a telescoping effect leaving only a numerator of 1 and denominator of 2 behind. Thus the 

rather complicated looking infinite product has value 0.5.  

 

70. After a few evaluations for low values of n it is easily seen that the expression seems to give the value (n+1)!-1 and 

a simple induction will confirm this guess. 

 

71. For the first number is should be noted that as its last two digits are 11 then it is three more than a multiple of 8 

and unfortunately no square number is three more than a multiple of eight hence it cannot be a perfect square. 

For the second it should be noted its digits add to 156 which is a multiple of three but not nine and hence (by 

well-known laws of divisibility) the same is true of the original number. This means it cannot be a perfect square 

as any square number which is a multiple of three must also be a multiple of nine. 

 

72. As f(x,y)=k(f(x,y)) we can apply this equality twice in a row to obtain f(x,y)=k2(f(x,y)) and as f(x,y) attains non zero 

values for some x,y then this implies k=1 or -1. An example where k=1 would be f(x,y)=x+y and an example 

where k=-1 would be f(x,y)=x-y. 

 

73. The cubic function will have an inverse for all x if it has no maximum or minimum and this will occur if its first 

derivative cannot be equal to zero for any x. On differentiating the function it is clear this will be when 𝑎 ≥ 0.  

 

74. The first inequality must be dealt with carefully, we must consider the cases when x<0 and x>0 separately. When 

x<0 we can deduce that x<f(x)<0 and when x>0 we can deduce that 0<f(x<x. Now the integral we want to 

bound can be split into two parts as follows; 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
1

0

0

−1
.  

In order to achieve a minimum value we can replace f(x) with x in the first part and f(x) with 0 in the second 

leaving us with 𝐼 = ∫ 𝑥𝑑𝑥
0

−1
 which of course evaluates to our lower bound of −

1

2
. In order to achieve the 

maximum we replace f(x) with 0 in the first part and f(x) with x in the second leaving us with 𝐼 = ∫ 𝑥𝑑𝑥
1

0
 which of 

course evaluates to our upper bound of 
1

2
. For the second part as x2 is always positive we deduce that 0<f(x)<x2 

which leads to a lower bound of 0 and upper bound of 
1

3
. 

 

 

 

 

 

 



75. The notation may look off putting but if we start with small n we can get a feel for what the question is about. 

Clearly f0≡1 as cos(0)=1 and f1≡x as cos(θ)≡cos(θ) and the double angle formula for cosine tells us that f2≡2x2-1 

as cos(2θ)≡2cos2(θ)-1. Now to find cos(nθ) we will need to utilise the formula  

 cos(nθ+1)+cos(nθ-1)≡2cos(nθ)cos(θ) and if we let cos(θ)=x and cos(nθ)=fn(x) we reach the desired result. To 

solve the given equation we rewrite it as cos(2θ)+cos(3θ)=0 and make use of factor formulae it write it as 

2cos(2.5θ)cos(0.5θ)=0 and from here we just need to find three values of θ which yield a unique value for cos(θ) 

and hence x. 

 

76. For a cubic to have both a local minimum and maximum its first derivative must be equal to zero for two 

different values of x. If we consider the discriminant of the quadratic obtained by differentiating y we reach the 

conclusion b2-3ac>0 if the cubic is to have two turning points. Note at this point the x coordinate of the point 

half way between the two turning points will be 
−𝑏

3𝑎
 (this is easily derived by considering the quadratic expression 

giving the first derivative, the line of symmetry of any quadratic is always half way between the two roots and has 

equation x=-(half of the x coefficient) in the case of any monic quadratic). A point of inflection occurs on the 

cubic when the second derivative is zero and by differentiating twice we find that a point of inflection occurs at 

𝑥 =
−𝑏

3𝑎
  thus yielding the required result. 

 

77. If we let y=0 in the given identity we can deduce that f(0)=0. If we let y=-x we can deduce that f(x)≡0. 

 

78. For f(x) we have domain x>0 and the range is f(x) can take any real number value, for ff(x) we have domain x>1 

(or else the outermost logarithm would be undefined) and range unchanged and for fff(x) we have domain x>e 

and range again unchanged. For fn(x) we must have domain x>n-1e where the notation na means n copies 

of a combined by exponentiation, right-to-left. 

 

79. Let the continued fraction we wish to find have the value x, it should be clear from the iterative process defining x 

that 𝑥 = 1 +
1

𝑥
. From this we can solve for x and it turns out that x the golden ratio (as x is clearly positive we 

ignore the other root). 

 

80. Upon rearrangement the inequality becomes 𝑒𝑥(𝑎 + sin(𝑥)) ≤ 𝑒𝑦(𝑎 + sin (𝑦) and if we want this to be true 

whenever 𝑥 ≤ 𝑦 then 𝑓(𝑥) = 𝑒𝑥(𝑎 + sin(𝑥)) must be an increasing function. Thus we must have that its derivative 

is always greater than or equal to zero. Upon differentiating and using some trigonometric formulae we find 

𝑓′(𝑥) = 𝑎 + √2sin (𝑥 +
𝜋

4
) and thus we must have 𝑎 ≥ √2 for the original inequality to hold whenever 𝑥 ≤ 𝑦. 

 

81. To start if we let y=0 then we deduce that f(0)=1. If x=y=1 then we see f(2)=(f(1))2 and if we continue in this 

manner and let x=2 and y=1 we see that f(3)=(f(1))3. It is not difficult to see that this pattern continues and for n 

an integer we have that f(n)=(f(1))n. To see that the same result holds for n a rational number we simply write 1 =

𝑞

𝑞
=

1

𝑞
+. . . +

1

𝑞
 which leads us to deduce 𝑓(1) = (𝑓 (

1

𝑞
))𝑞 and hence 𝑓 (

1

𝑞
) = (𝑓(1))

1

𝑞. In turn if we write 
𝑝

𝑞
=

1

𝑞
+. . . +

1

𝑞
 we see that 𝑓 (

𝑝

𝑞
) = (𝑓(1))

𝑝

𝑞 as required. To show that f(n)>0 for all n we write 𝑛 =
𝑛

2
+

𝑛

2
 which then 

implies 𝑓(𝑛) = 𝑓 (
𝑛

2
) 𝑓 (

𝑛

2
) = (𝑓 (

𝑛

2
))2 which is clearly always positive.  

 

82. We first replace cos2(y) with 1-sin2(y) and this reduces the equation to sin2(x)=sin2(y), so we need to identify where 

in the plane sin(𝑥) = ±sin (𝑦). There will be infinitely many points and in fact infinitely many lines where these 

equations hold true. We have the obvious y=x and y=-x but we also have the perhaps less obvious 𝑦 = 𝜋 − 𝑥 and 

𝑦 = 𝜋 + 𝑥. Due to the periodic nature of the sine function there are many more lines but there are obtained by 

adding on an integer multiple of 2π to one of the four already obtained.  

 

 

 

 

 

 



83. For 𝑦 = 𝑥𝑙𝑛(𝑥) the minimum occurs at (
1

𝑒
,
−1

𝑒
) and the curve does go through the origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

84. For 𝑦 =
ln (𝑥)

𝑥
 the maximum occurs at (𝑒,

1

𝑒
) and if we take logs and rearrange the given equation we see it is 

equivalent to 
ln (𝑏)

𝑏
=

ln (𝑎)

𝑎
. From the graph we can deduce the only integer solution is when a=2 and by inspection 

we see b=4.  

 

 

 

 

 

 

 

 

 

 

 

 

85. For y=xx the minimum occurs at (
1

𝑒
,
1

𝑒

1

𝑒)                 For 𝑦 = 𝑥
1

𝑥 the maximum occurs at (𝑒, 𝑒
1

𝑒) 

 

 

 

 

 

 

86. For 𝑦 =
sin (𝑥)

𝑥
 the curve goes through (0,1) and its maximums (except at x=0) lie on the curve 𝑦 =

1

𝑥
. 

 

 

 

 

 

 

 

 

 

 

 



   For 𝑦 =
sin (𝑥)

𝑥−1
 the graph has an asymptote at x=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

87.                                    𝑦 = cos (
1

𝑥
)                                                                       𝑦 = sin (

1

𝑥
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

88. For 𝑦 =
𝑥+sin (𝑥)

𝑥−sin (𝑥)
 the graph has an asymptote at x=0 and it oscillates above and below y=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

89. For x<0 the graph 𝑦 = cos(𝑥 + |𝑥|) is simply given by y=cos(0)=1 and for x>0 it is given by y=cos(2x). 

 

 

 

 

 

 

 

 

 

 



90.                         𝑦 = √𝑥3 − 𝑥                                                                            𝑦2 = 𝑥3 − 𝑥 

 

 

 

 

 

 

                                 

 

 

 

 

 

91. For 𝑦 =
(𝑥2−4)(𝑥2−3)

(𝑥2−2)2
 the graph has asymptotes at 𝑥 = ±√2 and y=1. 

 

 

 

 

 

 

 

 

92. For 𝑦 =
𝑥2+1

𝑥2−1
 the graph has asymptotes at 𝑥 = ±1 and y=1. 

 

 

 

 

 

 

 

 

 

93.                 y=|x2-1|                                                  𝑦 = 𝑥
1

3                                                     𝑦 = 𝑥
2

3 

 

 

 

 

 

 



94.                                        y=x2-x4                                                                             y2=x2-x4 

 
 

 

 

 

 

 

 

 

 

 

95. For 𝑦 = 𝑒−𝑥2
− 𝑒−3𝑥2

 the maximums occur at (±√ln (√3),
2√3

9
). 

 

 

 

 

 

 

 

 

 

 

96. By sketching appropriate graphs it is clear there are two solutions to the following equation; 

 𝑥 − 1 = (𝑒 − 1) ln(𝑥) and by inspection we see that they are x=1 and x=e.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

This helps us graph  𝑦 = 𝑒𝑥 − 𝑥𝑒 as its turning points occur precisely when 𝑥 − 1 = (𝑒 − 1) ln(𝑥). 

 

 

 

 

 

 

 

 

 

 

 

 

 



97. The equation for y can be written as 𝑦 = 3 −
4

𝑒2𝑥+1
 and thus the graph has asymptotes at y=-1 and y=3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98.                        n=2                                                     n=4                                                       n=20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99. If both sides of the equation have the same sign, then we the curve we want it the circle 𝑥2 + 𝑦2 = 8 and if they 

have differing signs the curve we want is 𝑥 = ±√2. 

 

 

 

 

 

 

 

 

 

 

 

 

 



100.                                                                       𝑦 = √1 − 𝑥2 + √4 − 𝑥2 

 

 

 

 

 

 

 

 

 

101.                    1=|x|+|y|                                         1=|x|-|y|                                               1=|y-x| 

 

 

 

 

 

 

 

 

102. First notice if (x,y) satisfies |x|+|y|+|x+y|<2 then so does (-x,-y). In the first quadrant the inequality becomes 

x+y<1. In the second quadrant we have either y>-x which gives rise to the inequality y<1, or y<-x which gives 

rise to the inequality x<1. Hence the region we want is the interior of the following quadrilateral: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103. The quantity we wish to minimise is the distance of x from 1, 2, 4 and 6. It should be clear that we can begin at 

x=0 and move towards x=2 in order to reduce this distance. Once we reach x=2 our function attains the value of 

7 and if we move towards 4 we find our function maintains the value of 7. If we move passed x=4 our function 

begins increasing again and thus the minimum value of the given function is 7. 

 



104. The first differential equation yields the solution y=ekt and for x>0 we can see y increases faster and faster as x 

increases. For the second part we know that when x=0 we have y=1, this tells us that the gradient of the solution 

curve will be positive. This means the value of y increases and as it does we can consider the new value of the 

gradient. Again the gradient will be positive so y will continue to increase and in fact whilst y is smaller than our 

large constant M the gradient will continue to be positive and y will continue to increase. As y gets closer to the 

value of M the gradient will continue to increase but at a slower and slower rate, from this we deduce that y=M  

is an asymptote to the solution curve we are looking for. Thus y increases continuously from 1 and tends to M  

as x gets large. 

 

105. It is worth noting that if F(x) is an anti-derivative of f(x) then ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 and in particular that 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) − 𝐹(0)
𝑥

0
 (this is known as The Fundamental Theorem of Calculus Part 1). For this problem we 

want to find 
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡) =

𝑑

𝑑𝑥
(𝐹(𝑥) − 𝐹(0)

𝑥

0
) but this is simply 

𝑑

𝑑𝑥
[𝐹(𝑥)] = 𝑓(𝑥) as F(0) is a constant and F(x)  is 

an anti-derivative of f(x). Thus by the Fundamental Theorem of Calculus (Part 1) the solution to the given 

problem is x8ex. 

 

106. We can differentiate both sides of the given equation with respect to x to obtain 
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡) = 3𝑓′(𝑥)

𝑥

0
 and then 

using the Fundamental Theorem of Calculus we arrive at 
1

3
=

𝑓′(𝑥)

𝑓(𝑥)
. It is worth noting at this point that if we let 

x=0 in the original equation we deduce that 𝑓(0) = −
𝑘

3
 and combining this with the previous equation we find 

that 𝑓(𝑥) = −
1

3
𝑘𝑒

1

3
𝑥. 

 

107. All three expressions are found in a similar manner which we will illustrate for i) only: let y=sinh-1(x) which 

implies that sinh(y)=x. This can be rewritten as 
𝑒𝑦−𝑒−𝑦

2
= 𝑥 which upon rearrangement becomes 

𝑒2𝑦 − 2𝑥𝑒𝑦 − 1 = 0. This equation is easily solved for ey by making use of the quadratic formula and finally by 

taking logarithms we deduce an expression for sinh-1(x) (the positive root must be taken as ey>0). 

The three expressions we seek are;   i) ln(𝑥 + √𝑥2 + 1)      ii) ln (𝑥 + √𝑥2 − 1)       iii) 
1

2
ln (

1+𝑥

1−𝑥
) 

 

108. The series 1 +
1

2
+

1

3
+

1

4
… is divergent, in other words it can be made to be 

as large as possible by taking more and more terms. This can be shown by 

considering the area under the curve 𝑦 =
1

𝑥
 from x=1 onwards. From the 

graph we see that the rectangles have area equal to our sum and the area 

under the curve from x=1 onwards is less than this. The curved area is given 

by ∫
1

𝑥
𝑑𝑥

𝑡

1
= ln (𝑡) as t approaches infinity. From this we deduce that the 

curved area is infinite hence the required sum is also infinite. 

 

The series 1 +
1

4
+

1

9
+

1

16
+ ⋯ is convergent, in other words the more terms 

you take the closer the sum gets to a fixed limit. This can be shown by 

considering the area under the curve 𝑦 =
1

𝑥2 from x=1 onwards. From the 

graph we see that the rectangles have area equal to one less than our sum 

and the area under the curve from x=1 onwards is more than this. The 

curved area is given by ∫
1

𝑥2 𝑑𝑥
𝑡

1
= 1 −

1

𝑡
 as t approaches infinity. From this 

we deduce that the area under the curve is finite hence the required sum is 

also finite (as an aside note that it is less than 2). This method of 

ascertaining convergence is known as the integral test. 

 

  

𝑦 =
1

𝑥2
 



109. The inequality is easily obtained by expanding the LHS, using the linearity property of integrals and noting that it 

must always be positive thus the quadratic (in µ) obtained must have a non-negative discriminant. Upon 

rearrangement the discriminant will yield the desired result.  

The second inequality is derived by letting 𝑓(𝑥) ≡ (1 + 𝑥5)
1

2 and 𝑔(𝑥) ≡ 1 in the Cauchy-Schwarz inequality. 

 

110. If we first find instead the integrals A+B and A-B and then add and subtract these we see that 

 𝐴 =
𝑥−ln|sin (𝑥)+cos(𝑥)|

2
 and 𝐵 =

𝑥+ln|sin (𝑥)+cos(𝑥)|

2
. 

 

111. The first integral is (by inspection) 
1

5
𝑠𝑖𝑛5(𝑥) and the second is found by writing cos3(x)≡cos2(x)cos(x) and then 

replacing cos2(x) by 1-sin2(x) which leads to 
1

7
𝑠𝑖𝑛7(𝑥) −

1

9
𝑠𝑖𝑛9(𝑥). This method will always work if we are 

integrating a positive integer power of sine multiplied by a positive odd integer power of cosine (note that both 

must have the same argument). 

 

112. If we divide the top and bottom of the integrand by xn we can integrate easily to obtain 𝐼 =
1

1−𝑛
ln |1 + 𝑥1−𝑛| which 

can manipulated to give 𝐼 =
1

1−𝑛
ln |

𝑥+𝑥𝑛

𝑥𝑛 |. 

 

113. Replacing x with a+b-x has the effect of reflecting the function in the line 𝑥 =
𝑎+𝑏

2
 and hence does not change the 

value of the integral in question as the reflection preserves the area under the curve (we could also prove the 

stated result by using a substitution). If we apply the result to I it becomes 𝐼 = ∫
ln (𝑥−3)

ln(9−𝑥)+ln (𝑥−3)
𝑑𝑥

8

4
 which implies 

that 2𝐼 = ∫ 1𝑑𝑥
8

4
 and hence 𝐼 = 2. If we apply the result to J it becomes 𝐽 = ∫

co𝑠2000(𝜃)

𝑠𝑖𝑛2000(𝜃)+𝑐𝑜𝑠2000(𝜃)
𝑑𝜃

𝜋

2
0

  

(as sin(90-θ)≡cos(θ)) which implies that 2𝐽 = ∫ 1𝑑𝜃
𝜋

2
0

 and hence 𝐽 =
𝜋

4
. 

 

114. If possible we would like to remove the surds from this integral which guides us towards the substitution u6=x 

and upon this substitution we have that 𝐼 = ∫
6𝑢5

𝑢3+𝑢2 𝑑𝑢
1

0
. This integral is easily solved if we first perform 

polynomial long division and then integrate term by term yielding the result 𝐼 = 5 − 6ln (2). 

 

115. This question is similar to question 108 and we will compare the given sum with an integral involving the function 

f(x)=x-s. From a diagram similar to the first in the solution to question 108 it should be clear that the given sum is 

greater than ∫ 𝑥−𝑠𝑑𝑥
∞

1
=

1

𝑠−1
. From a diagram similar to the second in the solution to question 108 it can be 

deduced that the given sum is less than 1 + ∫ 𝑥−𝑠𝑑𝑥
∞

1
= 1 +

1

𝑠−1
=

𝑠

𝑠−1
 as required. 

 

116. The first integral I can be found by first multiplying the top and bottom of the fraction in the integrand by 

1+sin(x) which leads to 𝐼 = ∫
1+sin (𝑥)

1−𝑠𝑖𝑛2(𝑥)
= ∫

1+sin (𝑥)

𝑐𝑜𝑠2(𝑥)
𝑑𝑥. If we then split the integrand into two separate functions we 

deduce that 𝐼 = tan(𝑥) + sec(𝑥) + 𝑐.  

J can be found by using integration by parts, if parts is used twice the original integral will appear again on the 

RHS and from this it can be deduced that 𝐽 =
𝑒𝑥 sin(𝑥)−𝑒𝑥cos (𝑥)

2
.  

K can be found by first substituting u=ex, followed by u=tan(z).  

This leads to 𝐾 = ∫
sec(𝑧)

tan(𝑧)
𝑠𝑒𝑐2(𝑧)𝑑𝑧 = ∫

se𝑐2(𝑧)

sin(𝑧)
𝑑𝑧 which after further manipulation gives  

𝐾 = ∫𝑐𝑜𝑠𝑒𝑐(𝑧) + tan(𝑧) sec(𝑧) 𝑑𝑧 = −ln |𝑐𝑜𝑠𝑒𝑐(𝑧) + cot (𝑧)| + sec (𝑧).  

Replacing z yields 𝐾 = −ln |𝑐𝑜𝑠𝑒𝑐(arctan(𝑒𝑥)) + cot (arctan(𝑒𝑥))| + sec(arctan(𝑒𝑥)) + 𝑐. 

 

117. If we consider the functions being integrated in both cases they are clearly positive in the interval (0,1) and for I 

we have 𝑦 = √1 − 𝑥74
 and for J we have 𝑦 = √1 − 𝑥47

. Upon rearrangement we see that I gives us the area under 

the curve 𝑦4 + 𝑥7 = 1 and J gives us the area under the curve 𝑦7 + 𝑥4 = 1 but these two functions are inverses of 

each other (one is derived from the other by interchanging the roles of x and y). The graphs of two inverse 

functions are related by a reflection in the line y=x and hence the two integrals must be identical as both functions 

are decreasing and remain non negative on the interval (0,1). 



 

118. We begin by making the substitution x=π-u in to the LHS which gives the integral ∫
−(𝜋−𝑢)sin (𝜋−𝑢)

1+𝑐𝑜𝑠2(𝜋−𝑢)

0
𝜋

2

𝑑𝑢. 

We can now use some trigonometrical identities to tidy the expression; sin(π-u)≡sin(u) and cos(π-u)=-cos(u) and 

also note that reversing the limits requires us to multiple the integrand by -1. We have shown that 

∫  
𝑥𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋
𝜋

2

= ∫   
(𝜋−𝑥)𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋

2
0

 and this allows to write that 𝐼 = ∫  
𝑥𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋

2
0

+ ∫  
𝑥𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋
𝜋

2

 is equivalent 

to 𝐼 = ∫  
𝑥𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋

2
0

+ ∫   
(𝜋−𝑥)𝑠𝑖𝑛(𝑥)

1+𝑐𝑜𝑠2(𝑥)
 𝑑𝑥

𝜋

2
0

= ∫
𝜋 sin(𝑥)

1+𝑐𝑜𝑠2(𝑥)
𝑑𝑥

𝜋

2
0

. This last integral is found by using the substitution 

v=cos(x) which leads to 𝐼 = ∫
𝜋

1+𝑣2 𝑑𝑣 = 𝜋(arctan(𝑣)) 1
0

1

0
 and eventually yields that 𝐼 =

𝜋2

4
. 

 

119. If we write ∫
𝑥2

√1−𝑥2
 𝑑𝑥

1

0
= ∫ 𝑥

𝑥

√1−𝑥2
 𝑑𝑥

1

0
 and apply integration by parts with u=x we yield the desired result. This 

allows us to write 𝐼 = ∫
𝑥2

√1−𝑥2
 𝑑𝑥 =

1

0
∫ √1 − 𝑥2 𝑑𝑥

1

0
. The second form can be integrated by making the substitution 

x=cos(u) and making use of double angle formulae for cosine, eventually leading to 𝐼 =
𝜋

4
. 

 

120. There are two methods that can be used to find the shortest distance from A to the curve y=x2+1 and we will 

outline both here. Each method requires us first to introduce point B(t,t2+1) which will always lie on the given 

curve. The first method utilises the distance between two points formula and allows us to derive an expression for 

the square of the distance AB. The distance formula is quartic in t and can be minimised by differentiating the 

expression and setting the derivative to zero. The only real value of t obtained is 1 and hence we find that the 

point we desire is B(1,2). The second method requires us to note that the shortest distance will a perpendicular 

distance i.e. the line AB will be perpendicular to the tangent to the curve at B. To justify this imagine a circle 

centred at A starting with radius zero and slowly increasing, at some point it will touch the curve for the first time 

and this point of contact will be the point B. If we consider AB as a radius it should be clear it is perpendicular to 

the tangent to the curve at B due to the tangent-radius circle theorem. This means we can use the gradients of AB 

and the tangent to the curve at B to find the value of t we desire as perpendicular gradients have product -1. Of 

course both methods yield t=1 and thus B(1,2) and the distance required is √5.  

 

The second problem can be solved by adapting the second method outlined above as the shortest distance from 

y=x to the curve must be perpendicular to the tangent to the curve at the point of contact and perpendicular to 

the line y=x. Let us introduce C(t,t2+1), at C the gradient of the curve must be 1 (the same as the gradient of the 

line y=x) which after minimal calculus gives us that t=0.5 and hence C(0.5,1.25). Now in order to find the required 

distance we must find where the normal to the curve at C meets the line y=x. After minimal calculus and 

coordinate geometry we find the normal meets the line y=x at D(0.875,0.875) which allows us to calculate the 

shortest distance as 
3√2

8
. 

 

The third problem may seem rather complicated as the shortest distance between the curves will lie on a common 

perpendicular and usually finding such a line is not easy. We are fortunate here because the two curves are inverses 

to each other and hence the graph of one is just a reflection of the other in the line y=x. This means we have 

already found our common perpendicular in the previous part and the shortest distance we want is simply twice 

the distance found in the previous part. Thus the shortest distance between the curves is 
3√2

4
. 

 

121. Consider a variable point C(t,t2) which lies on the curve y=x2, as we have three coordinates we can now calculate 

the vectors 𝐵𝐴⃑⃑⃑⃑  ⃑ and 𝐵𝐶⃑⃑⃑⃑  ⃑.  We have that 𝐵𝐴⃑⃑⃑⃑  ⃑ = (6
4
) and 𝐵𝐶⃑⃑⃑⃑  ⃑ = ( 𝑡

𝑡2+4
) and remembering that the area of a triangle can 

be found as half the positive value of the determinant of the matrix formed by two vectors emanating from the 

same vertex of the triangle and representing its corresponding edges. The matrix thus formed is 𝑀 = (
6 𝑡
4 𝑡2 + 4

) 

and we find that its determinant is minimised when t=3 hence the point we are looking for is C(3,9). 

 

  



122. For the first part we consider one side of the triangle fixed along the x-axis and vary the third vertex. The third 

vertex will trace out the locus of an ellipse as the perimeter is fixed (total distance of a point on an ellipse from its 

two foci remains constant). As the area of any triangle is one half of the product of its base and its perpendicular 

height we deduce that the triangle of maximum area given a fixed perimeter must be isosceles (as this would 

maximise the height of our triangle within the ellipse). It is easily shown with the use of calculus that among 

isosceles triangles of fixed perimeter the equilateral triangle has the greatest area. 

For the second part consider what happens if we let one side of the right-angle triangle tend to zero, the 

hypotenuse and other side length will both approach 
𝑃

2
. This means if the smallest side has length 𝜀 then the area 

of the triangle will be smaller than 
𝜀𝑃

4
 which can be made as small as we wish. Thus there is no right angled 

triangle, with fixed perimeter, of smallest area. 

 

123. We can write 1110-1≡(10+1)10-1 which after expanding leaves only terms divisible by 100 hence 1110-1 is divisible 

by 100 as required. An alternative would be to make use of the following factorisation 

xn-1=(x-1)(xn-1+xn-2+...+x+1) and note that 119+118+...+11+1 has last digit zero and hence is divisible by 10. 

 

124. For any polynomial in x we can find the sum of its coefficients by evaluating its value at x=1 (think about this 

claim for a moment) hence the sum we want is 1. 

 

125. We wish to find a polynomial with integer coefficients that has 𝑥 = √2 + √3 as a root, to help us we first calculate 

powers of x starting with x2. We have that 𝑥2 = 5 + 2√6 and from this 𝑥4 = 49 + 20√6.  

From these two expressions we can eliminate the irrational part as x4-x2=-1 which means that one such 

polynomial we seek is x4-x2+1=0. 

 

126. If there is no term in x of odd degree then our polynomial is an even polynomial and f(-x)≡f(x). If we replace x 

with –x in the given expression we find that the first bracket becomes the second and vice versa hence the 

expression is that of an even function and we deduce the desired result. 

 

127. As the given polynomial is quadratic in x2 its roots must be of the form 𝑥 = {−𝑏,−𝑎, 𝑎, 𝑏} and as we seek roots 

that are in arithmetic progression they must be of the form 𝑥 = {−3𝑎,−𝑎, 𝑎, 3𝑎}. This means our polynomial can 

be factored as (𝑥2 − 𝑎)(𝑥2 − 9𝑎) and upon expanding and comparing coefficients of each power of x with the 

given expression we find that 10𝑎2 = 3𝑚 + 2 and 9𝑎4 = 𝑚2.  

Upon elimination of a we find that 19𝑚2 − 108𝑚 − 36 = 0 and hence 𝑚 = −
6

19
 or 𝑚 = 6. 

 

128. If  
𝑝

𝑞
  is a root of f(x) then 𝑓 (

𝑝

𝑞
) = 0 which tells us that 0 = 𝑎𝑛(

𝑝

𝑞
)𝑛 + 𝑎𝑛−1(

𝑝

𝑞
)𝑛−1 + ⋯+ 𝑎1(

𝑝

𝑞
) + 𝑎0. If we multiply 

the previous equation by qn we find that 0 = 𝑎𝑛𝑝
𝑛 + 𝑎𝑛−1𝑝

𝑛−1𝑞 + ⋯+ 𝑎1𝑝𝑞𝑛−1 + 𝑎0𝑞
𝑛. As 

𝑝

𝑞
 is in lowest terms we 

know that p and q share no factors and thus as q divides the LHS of the previous equation it must also divide the 

RHS which implies 𝑞|𝑎𝑛. A similar argument allows us to deduce that 𝑝|𝑎0. This result can aid us in finding 

rational roots of polynomials where factorisation may be difficult.  

 

129. The four distinct collinear points can be viewed as the intersection points of the given curve and the straight line 

y=mx+c. At the points of intersection we have that mx+c=2x4+7x3+3x-5 which after rearrangement becomes 

0=x4+3.5x3+(1.5-0.5m)x-2.5. If we let the four distinct intersection points have x coordinates a, b, c and d then we 

can write the previous equation as 0=(x-a)(x-b)(x-c)(x-d) and by comparing x3 coefficients in the two equations we 

find that a+b+c+d=-3.5. This implies the average we seek is -0.875. 

 

130. Consider 𝑓(𝑥, 𝑦) = 𝑥𝑛 + 𝑦𝑛, when n is odd we have that 𝑓(𝑥, −𝑥) = 0 which tells us that (𝑥 + 𝑦) is a factor of 

𝑥𝑛 + 𝑦𝑛. We can use this result to aid us here as 199+299+399+499+599 can be rewritten as   

(199+499)+(299+399 )+(599) where it is now clear each bracketed term is divisible by 5 hence the sum is also divisible 

by 5 as required.  

 

 

 



131. If we express each term of the sum as a fraction with denominator equal to the lowest common multiple  

of 2, 3, ..., n we find all numerators will be even except for the single term whose original denominator was the 

highest power of 2 less than or equal to n. Thus the sum of the numerators is odd and the lowest common 

denominator is even hence the sum cannot be integer valued.  

 

132. Denote the sum of the first n terms S(n). If n is odd we want the sum 𝑆(𝑛) = 0 + 1 + 1 + 2 + 2+. . . +
𝑛−1

2
+

𝑛−1

2
 

which can be simplified using the formula for the sum of the first k natural numbers: 
1

2
𝑘(𝑘 + 1). 

Thus for n odd we have that 𝑆(𝑛) =
𝑛2−4

4
. 

For n even we want 𝑆(𝑛) = 0 + 1 + 1 + 2 + 2+. . . + (
𝑛

2
− 1) + (

𝑛

2
− 1) +

𝑛

2
 which simplifies to 𝑆(𝑛) =

𝑛2

4
. 

For the second part first note that (s+t)-(s-t)=2t and as the difference is always even s+t and s-t must have the 

same parity (both be even or bot be odd). This means that for n even we have  

𝑆(𝑠 + 𝑡) − 𝑆(𝑠 − 𝑡) =
(𝑠+𝑡)2

4
−

(𝑠−𝑡)2

4
= 𝑠𝑡. For n odd we have 𝑆(𝑠 + 𝑡) − 𝑆(𝑠 − 𝑡) =

(𝑠+𝑡)2−1

4
−

(𝑠−𝑡)2−1

4
= 𝑠𝑡 also. 

 

133. First note that for k>2 we have k!=2x3x4x5x...xk>2k-1 which implies 
1

𝑘!
<

1

2𝑘−1.  

Thus 1 +
1

1!
+

1

2!
+ ⋯+

1

𝑛!
< 1 + 1 +

1

2
+

1

22 +. . . +
1

2𝑛−1 but the RHS of this inequality can be simplified  

(using the formula for the sum of a geometric series) to yield 1 +
1

1!
+

1

2!
+ ⋯+

1

𝑛!
< 1 +

1−(
1

2
)𝑛

1−
1

2

= 3 −
1

2𝑛−1 < 3.  

 

134. The first property tells us that P(x,y)-P(y,x)≡0 and the second property tells us that P(x,y)≡(x-y)Q(x,y).  

Combining both identities we see (x-y)Q(x,y)-(y-x)Q(y,x)≡0 which can be rewritten as (x-y)(Q(x,y)+Q(y,x))≡0. 

From this we deduce that Q(x,y)+Q(y,x)≡0 and if we let y=x we find that Q(x,x)=0 and hence (x-y) is a factor  

of Q(x,y). This implies that (x-y)2 is a factor of P(x,y) as required. 

 

135. The given expression can be manipulated to give (𝑥 − 2𝑦)2 = 𝑥𝑦 and upon expansion and division by y2 this yields 

(
𝑥

𝑦
)2 − 5(

𝑥

𝑦
) + 4 = 0. The second equation can be factored and gives solutions 

𝑥

𝑦
= 1 or 

𝑥

𝑦
= 4 but only one of 

these is a solution to the original problem because if x=y then x-2y<0 and the original equation would be 

undefined. 

 

136. Let us write a and b in a more convenient form; 𝑎 =
10𝑚−1

9
 and 𝑏 = 10𝑚 + 5. Next we calculate an expression for 

ab+1; 𝑎𝑏 + 1 =
(10𝑚−1)(10𝑚+5)

9
+ 1 which can be manipulated to give 𝑎𝑏 + 1 =

102𝑚+4(10𝑚)+4

9
= (

10𝑚+2

3
)2. Thus the 

square root we require is 
10𝑚+2

3
=

10𝑚+2−3+3

3
=

10𝑚−1

3
+ 1 = 333…3334 where there are m-1 digit 3’s.  

 

137. If we let x denote our choice of base we have 10201≡x4+2x2+1≡(x2+1)2 thus 10201 is composite in all bases. 

 

138. The number of integers less than or equal to 1030 that are a power of k is 10
30

𝑘 . You may think then that the total 

we are looking for is 1015+1010+106 but this number is too large because some powers of 2 are also powers of 3 

for example. The total we want is 1015+1010+106-105-103-102+101 and it is found by applying the inclusion 

exclusion principle. The 4th, 5th and 6th terms in the sum remove the 6th powers (which are both 2nd powers and 3rd 

powers and so have been counted twice), 10th powers and 15th powers respectively and the last term counts the 

number of 30th powers (which have been counted in the first three terms and removed in the next three). 

 

139. Let 𝑥 = [𝑥] + 𝑒 where 0 ≤ 𝑒 < 1, so we have 𝑛𝑥 = 𝑛[𝑥] + 𝑛𝑒 which implies [𝑛𝑥] = 𝑛[𝑥] + (𝑛𝑒).  

This tells us [
[𝑛𝑥]

𝑛
] = [𝑥] + [

[𝑛𝑒]

𝑛
] = [𝑥] , since [𝑛𝑒] ≤ 𝑛𝑒 < 𝑛. As an aside; the function (z) is often called the floor 

function. 

 

 



140. Let us calculate the probability of picking three cards and not seeing a face card; there are 40 cards in the pack 

which are not face cards so the number of three card hands without a face card is (40
3
) and the total number of 

three card hands is (52
3
) hence the probability we want is 

(40
3 )

(52
3 )

≈ 0.44. This means you are more likely to see face 

cards in your hand of three cards than not.  

 

141. The given expression can be simplified to (2log3 13)(5 log13 3) = 10 (log3 13)(log13 3) = 10 (if the last equality is 

not clear consider the change of base formula for logarithms in the special case where the argument switches with 

the base). 

 

142. The following ingenious solution is rather famous: Consider adding an outer shell to the 4x4x4 cube so as to make 

it a 6x6x6 cube. Imagine splitting it into 216 1x1x1 cubes. Each winning line on the 4x4x4 cube can be extended at 

each end by a single 1x1x1 cube in to the outer shell. Every winning line will have two unique end points within 

the shell hence the total number of winning lines must be 
1

2
(63 − 43) = 76.  

 

143. Without loss of generality assume that a<b. First note that the first digit of the product ab will not change if we 

divide a or b by a power of ten hence we can keep dividing a and b by ten until the quotient of both divisions is 

less than ten. We shall work with these quotients instead; denote these two numbers c+r and d+s where c and d 

are single digit integers (the first digits of a and b respectively) and 0 ≤ 𝑟, 𝑠 < 1. Now we have two cases to 

examine: The first is that (c+r)(d+s)<10 in which case the first digit of the product is at least cd and as 𝑐 ≥ 1 then 

this first digit is greater than or equal to d. In the second case (𝑐 + 𝑟)(𝑑 + 𝑠) ≥ 10 and since 

(c+r)(d+s)<(c+1)(9+1)=10(c+1) the product is a number between 10 and 90 inclusive whose first digit does not 

exceed c. Thus it is not possible for the first digit of the product to fall strictly between the first digits of the two 

numbers. 

 

144. Every time the gambler lost his total was multiplied by 0.5 and every time he won his total was multiplied by 1.5 

so if he played 2n games and won half of them his total would be multiplied by (
1

2
)𝑛(

3

2
)𝑛 = (

3

4
)𝑛.  

As the overall multiplier is less than one we deduce that the gambler lost money. 

 

145. Let 𝑤𝑘 denote the chance of an individual winning all of their opponent’s money given that they currently have 

£k, we see that 𝑤𝑘 =
1

2
𝑤𝑘−1 +

1

2
𝑤𝑘+1 as the next game is either won or lost. This recurrence relation can be 

rearranged to give 𝑤𝑘+1 − 𝑤𝑘 = 𝑤𝑘 − 𝑤𝑘−1 and as 𝑤0 = 0 (if a player has no money they have lost the game hence 

have a zero chance of winning) we have that 𝑤2 − 𝑤1 = 𝑤1. From this we know 𝑤2 = 2𝑤1 and repeated 

application of the recurrence relation yields 𝑤𝑘 = 𝑘𝑤1. We also know that 𝑤𝑎+𝑏 = 1 (when one player has £(a+b) 

they have won the game and hence their chance of winning is certain) from which we deduce 𝑤1 =
1

𝑎+𝑏
 and hence 

the probability we desire is 𝑤𝑎 =
𝑎

𝑎+𝑏
. 

 

146. Replacing x with 1-x in the given functional equation gives (1-x)2F(1-x)+F(x)=2(1-x)-(1-x)4. Solving this and the 

given equation simultaneously yields F(x)=1-x2. 

 

147. If we start at the end there are 3 choices for sn it can be n-2, n-1 or n. If we move on to sn-1 we have four choices 

n-3, n-2, n-1, n but one of these choices has already been taken by sn thus there are again 3 choices. We can 

continue in the same way until we reach s2 for which there are only two choices remaining and thus there will only 

be one for s1. Thus the total number of permutations satisfying the given condition is 2(3n-2). 

 

148. Notice that (2𝑛
𝑛
) − ( 2𝑛

𝑛+1
) ≡ (2𝑛

𝑛
) −

𝑛

𝑛+1
(2𝑛

𝑛
) ≡

1

𝑛+1
(2𝑛

𝑛
) and as the difference between two binomial coefficients 

(always integer valued themselves) is always an integer the give expression is also always integer valued. The 

expression given is the value of the nth Catalan number and the sequence of Catalan numbers arises frequently in 

the study of Combinatorics (the theory of counting mathematical structures). 

 

 

 



149. Using the diagram and some trigonometry we can show that 

 𝐿(𝜃) = 𝑎𝑠𝑒𝑐(𝜃) + 𝑏𝑐𝑜𝑠𝑒𝑐(𝜃). For the ladder to be carried around the corner 

it must have a length less than the smallest value 𝐿(𝜃) can take. In a sense we 

are minimising in order to maximise. If we differentiate 𝐿(𝜃) with respect to 

theta, set the derivative to zero and rearrange we find that tan(𝜃) = (
𝑏

𝑎
)
1

3. 

Using the Pythagorean identities (or by drawing a suitable triangle)  

we can find the corresponding values of sec (𝜃) and 𝑐𝑜𝑠𝑒𝑐(𝜃).  

Upon substituting these values in to 𝐿(𝜃) we find its minimum value is (𝑎
2

3 + 𝑏
2

3)
3

2 and hence this is also the 

maximum length of ladder that can be carried through the corridors. 

 

150. For each position on the bracelet we have three choices giving 311 arrangements. Unfortunately many of these 

arrangements lead to the same bracelet due to rotation. The three bracelets made up of a single colour are counted 

once. For each arrangement that contains at least two different coloured beads we can imagine rotating it by one 

position which would yield the same bracelet. This means every bracelet containing multiple colours is counted 

eleven times so there are in fact  
311−3

11
 such bracelets.  

In total this gives 3 +
311−3

11
= 16107 bracelets. It is interesting to note two things; the first is that if number of 

beads on the bracelet is not prime the above method is invalid (can you see why?), the second is that we have 

provided a combinatorial proof of Fermat’s Little Theorem which tells us that 𝑎𝑝 − 𝑎 is always divisible by 𝑝 

where 𝑎 is a positive whole number and 𝑝 is prime. 

 

151. The total number of outcomes when rolling a fair dice twelve times is 612. To calculate the required probability we 

need to know how many of those outcomes give us two of each number. Any outcome that is a rearrangement of 

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6 is what we need and there are 
12!

(2!)6
 of these. This is because there are 12! ways to arrange 

twelve items but some of the items are repeated so this is too large. If we just consider digit 1s: we can see that in 

any given arrangement they can be swapped around to yield the same arrangement, this is why we must divide by 

2! and of course the same can be said of the other numbers. This leads to a probability of 
12!

(2!)6612. 

 

For the second problem if the sequence is increasing then the outcome of each of the four rolls must be different, 

so we will first count in how many ways this can occur. There 10 choices for the outcome of the first roll, 9 

choices for the second, 8 for the third and 7 for the fourth giving a total of 10×9×8×7 = 5040. If we have any set 

of four numbers there are 4! ways to arrange them but only one of these will put them in increasing order. This 

means the number of desirable outcomes for us is 
5040

4!
= 210 and the required probability is 

210

10000
= 0.021. 


